Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A bicistronic, Ubiquitin-10 promoter-based vector cassette for transient transformation and functional analysis of membrane transport demonstrates the utility of quantitative voltage clamp studies on intact Arabidopsis root epidermis.

Identifieur interne : 000583 ( Main/Exploration ); précédent : 000582; suivant : 000584

A bicistronic, Ubiquitin-10 promoter-based vector cassette for transient transformation and functional analysis of membrane transport demonstrates the utility of quantitative voltage clamp studies on intact Arabidopsis root epidermis.

Auteurs : Zhonghua Chen [Royaume-Uni] ; Christopher Grefen ; Naomi Donald ; Adrian Hills ; Michael R. Blatt

Source :

RBID : pubmed:21251017

Descripteurs français

English descriptors

Abstract

To date the use of fluorescent reporter constructs in analysing membrane transport has been limited primarily to cell lines expressing stably either the tagged transporter protein(s) or markers to identify lineages of interest. Strategies for transient expression have yet to be exploited in transport analysis, despite their wide application in cellular imaging studies. Here we describe a Gateway-compatible, bicistronic vector, incorporating the constitutive Ubiqutin-10 gene promoter of Arabidopsis that gives prolonged expression after transient transformation and enables fluorescence marking of cells without a fusion construct. We show that Arabidopsis root epidermal cells are readily transformed by co-cultivation with Agrobacterium and are tractable for quantitative electrophysiological analysis. As a proof of principle, we transiently transformed Arabidopsis with the bicistronic vector carrying GFP as the fluorescent marker and, separately, the integral plasma membrane protein SYP121 essential for the inward K+ channel current. We demonstrate that transient expression of SYP121 in syp121 mutant plants is sufficient to rescue the K+ current in vivo. The combination of transient expression and use of the bicistronic vector promises significant advantages for studies of membrane transport and nutrient acquisition in roots.

DOI: 10.1111/j.1365-3040.2010.02262.x
PubMed: 21251017


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A bicistronic, Ubiquitin-10 promoter-based vector cassette for transient transformation and functional analysis of membrane transport demonstrates the utility of quantitative voltage clamp studies on intact Arabidopsis root epidermis.</title>
<author>
<name sortKey="Chen, Zhonghua" sort="Chen, Zhonghua" uniqKey="Chen Z" first="Zhonghua" last="Chen">Zhonghua Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Plant Physiology and Biophysics, MCSB-Plant Sciences, Bower Building, University of Glasgow, Glasgow G128QQ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Laboratory of Plant Physiology and Biophysics, MCSB-Plant Sciences, Bower Building, University of Glasgow, Glasgow G128QQ</wicri:regionArea>
<orgName type="university">Université de Glasgow</orgName>
<placeName>
<settlement type="city">Glasgow</settlement>
<region type="country">Écosse</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grefen, Christopher" sort="Grefen, Christopher" uniqKey="Grefen C" first="Christopher" last="Grefen">Christopher Grefen</name>
</author>
<author>
<name sortKey="Donald, Naomi" sort="Donald, Naomi" uniqKey="Donald N" first="Naomi" last="Donald">Naomi Donald</name>
</author>
<author>
<name sortKey="Hills, Adrian" sort="Hills, Adrian" uniqKey="Hills A" first="Adrian" last="Hills">Adrian Hills</name>
</author>
<author>
<name sortKey="Blatt, Michael R" sort="Blatt, Michael R" uniqKey="Blatt M" first="Michael R" last="Blatt">Michael R. Blatt</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21251017</idno>
<idno type="pmid">21251017</idno>
<idno type="doi">10.1111/j.1365-3040.2010.02262.x</idno>
<idno type="wicri:Area/Main/Corpus">000575</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000575</idno>
<idno type="wicri:Area/Main/Curation">000575</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000575</idno>
<idno type="wicri:Area/Main/Exploration">000575</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A bicistronic, Ubiquitin-10 promoter-based vector cassette for transient transformation and functional analysis of membrane transport demonstrates the utility of quantitative voltage clamp studies on intact Arabidopsis root epidermis.</title>
<author>
<name sortKey="Chen, Zhonghua" sort="Chen, Zhonghua" uniqKey="Chen Z" first="Zhonghua" last="Chen">Zhonghua Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Plant Physiology and Biophysics, MCSB-Plant Sciences, Bower Building, University of Glasgow, Glasgow G128QQ, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Laboratory of Plant Physiology and Biophysics, MCSB-Plant Sciences, Bower Building, University of Glasgow, Glasgow G128QQ</wicri:regionArea>
<orgName type="university">Université de Glasgow</orgName>
<placeName>
<settlement type="city">Glasgow</settlement>
<region type="country">Écosse</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grefen, Christopher" sort="Grefen, Christopher" uniqKey="Grefen C" first="Christopher" last="Grefen">Christopher Grefen</name>
</author>
<author>
<name sortKey="Donald, Naomi" sort="Donald, Naomi" uniqKey="Donald N" first="Naomi" last="Donald">Naomi Donald</name>
</author>
<author>
<name sortKey="Hills, Adrian" sort="Hills, Adrian" uniqKey="Hills A" first="Adrian" last="Hills">Adrian Hills</name>
</author>
<author>
<name sortKey="Blatt, Michael R" sort="Blatt, Michael R" uniqKey="Blatt M" first="Michael R" last="Blatt">Michael R. Blatt</name>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis (physiology)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Electrophysiology (MeSH)</term>
<term>Genes, Reporter (genetics)</term>
<term>Genetic Vectors (genetics)</term>
<term>Green Fluorescent Proteins (genetics)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>Membrane Proteins (genetics)</term>
<term>Membrane Proteins (metabolism)</term>
<term>Microscopy, Confocal (MeSH)</term>
<term>Microscopy, Fluorescence (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Patch-Clamp Techniques (MeSH)</term>
<term>Plant Epidermis (cytology)</term>
<term>Plant Epidermis (metabolism)</term>
<term>Plant Roots (cytology)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (physiology)</term>
<term>Plants, Genetically Modified (cytology)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Plants, Genetically Modified (physiology)</term>
<term>Potassium Channels (physiology)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Qa-SNARE Proteins (genetics)</term>
<term>Qa-SNARE Proteins (metabolism)</term>
<term>Rhizobium (genetics)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (metabolism)</term>
<term>Tobacco (physiology)</term>
<term>Transformation, Genetic (MeSH)</term>
<term>Ubiquitin (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Arabidopsis (physiologie)</term>
<term>Canaux potassiques (physiologie)</term>
<term>Gènes rapporteurs (génétique)</term>
<term>Microscopie confocale (MeSH)</term>
<term>Microscopie de fluorescence (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Protéines Qa-SNARE (génétique)</term>
<term>Protéines Qa-SNARE (métabolisme)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines membranaires (génétique)</term>
<term>Protéines membranaires (métabolisme)</term>
<term>Protéines à fluorescence verte (génétique)</term>
<term>Protéines à fluorescence verte (métabolisme)</term>
<term>Racines de plante (cytologie)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (métabolisme)</term>
<term>Racines de plante (physiologie)</term>
<term>Rhizobium (génétique)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Tabac (génétique)</term>
<term>Tabac (métabolisme)</term>
<term>Tabac (physiologie)</term>
<term>Techniques de patch-clamp (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
<term>Transport biologique (MeSH)</term>
<term>Ubiquitine (génétique)</term>
<term>Vecteurs génétiques (génétique)</term>
<term>Végétaux génétiquement modifiés (cytologie)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
<term>Végétaux génétiquement modifiés (physiologie)</term>
<term>Électrophysiologie (MeSH)</term>
<term>Épiderme végétal (cytologie)</term>
<term>Épiderme végétal (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Green Fluorescent Proteins</term>
<term>Membrane Proteins</term>
<term>Qa-SNARE Proteins</term>
<term>Ubiquitin</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Racines de plante</term>
<term>Végétaux génétiquement modifiés</term>
<term>Épiderme végétal</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Plant Epidermis</term>
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Genes, Reporter</term>
<term>Genetic Vectors</term>
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Rhizobium</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Gènes rapporteurs</term>
<term>Protéines Qa-SNARE</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines membranaires</term>
<term>Protéines à fluorescence verte</term>
<term>Racines de plante</term>
<term>Rhizobium</term>
<term>Tabac</term>
<term>Ubiquitine</term>
<term>Vecteurs génétiques</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Green Fluorescent Proteins</term>
<term>Membrane Proteins</term>
<term>Plant Epidermis</term>
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Qa-SNARE Proteins</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Protéines Qa-SNARE</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines membranaires</term>
<term>Protéines à fluorescence verte</term>
<term>Racines de plante</term>
<term>Tabac</term>
<term>Végétaux génétiquement modifiés</term>
<term>Épiderme végétal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Canaux potassiques</term>
<term>Racines de plante</term>
<term>Tabac</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arabidopsis</term>
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Potassium Channels</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Electrophysiology</term>
<term>Microscopy, Confocal</term>
<term>Microscopy, Fluorescence</term>
<term>Mutation</term>
<term>Patch-Clamp Techniques</term>
<term>Promoter Regions, Genetic</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Microscopie confocale</term>
<term>Microscopie de fluorescence</term>
<term>Mutation</term>
<term>Régions promotrices (génétique)</term>
<term>Techniques de patch-clamp</term>
<term>Transformation génétique</term>
<term>Transport biologique</term>
<term>Électrophysiologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To date the use of fluorescent reporter constructs in analysing membrane transport has been limited primarily to cell lines expressing stably either the tagged transporter protein(s) or markers to identify lineages of interest. Strategies for transient expression have yet to be exploited in transport analysis, despite their wide application in cellular imaging studies. Here we describe a Gateway-compatible, bicistronic vector, incorporating the constitutive Ubiqutin-10 gene promoter of Arabidopsis that gives prolonged expression after transient transformation and enables fluorescence marking of cells without a fusion construct. We show that Arabidopsis root epidermal cells are readily transformed by co-cultivation with Agrobacterium and are tractable for quantitative electrophysiological analysis. As a proof of principle, we transiently transformed Arabidopsis with the bicistronic vector carrying GFP as the fluorescent marker and, separately, the integral plasma membrane protein SYP121 essential for the inward K+ channel current. We demonstrate that transient expression of SYP121 in syp121 mutant plants is sufficient to rescue the K+ current in vivo. The combination of transient expression and use of the bicistronic vector promises significant advantages for studies of membrane transport and nutrient acquisition in roots.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21251017</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>06</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2011</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>A bicistronic, Ubiquitin-10 promoter-based vector cassette for transient transformation and functional analysis of membrane transport demonstrates the utility of quantitative voltage clamp studies on intact Arabidopsis root epidermis.</ArticleTitle>
<Pagination>
<MedlinePgn>554-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1365-3040.2010.02262.x</ELocationID>
<Abstract>
<AbstractText>To date the use of fluorescent reporter constructs in analysing membrane transport has been limited primarily to cell lines expressing stably either the tagged transporter protein(s) or markers to identify lineages of interest. Strategies for transient expression have yet to be exploited in transport analysis, despite their wide application in cellular imaging studies. Here we describe a Gateway-compatible, bicistronic vector, incorporating the constitutive Ubiqutin-10 gene promoter of Arabidopsis that gives prolonged expression after transient transformation and enables fluorescence marking of cells without a fusion construct. We show that Arabidopsis root epidermal cells are readily transformed by co-cultivation with Agrobacterium and are tractable for quantitative electrophysiological analysis. As a proof of principle, we transiently transformed Arabidopsis with the bicistronic vector carrying GFP as the fluorescent marker and, separately, the integral plasma membrane protein SYP121 essential for the inward K+ channel current. We demonstrate that transient expression of SYP121 in syp121 mutant plants is sufficient to rescue the K+ current in vivo. The combination of transient expression and use of the bicistronic vector promises significant advantages for studies of membrane transport and nutrient acquisition in roots.</AbstractText>
<CopyrightInformation>© 2011 Blackwell Publishing Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Zhonghua</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Plant Physiology and Biophysics, MCSB-Plant Sciences, Bower Building, University of Glasgow, Glasgow G128QQ, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grefen</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Donald</LastName>
<ForeName>Naomi</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hills</LastName>
<ForeName>Adrian</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Blatt</LastName>
<ForeName>Michael R</ForeName>
<Initials>MR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/D001528/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/C500595/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/F001673/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>P12750</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/F001630/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/H009817/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>01</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008565">Membrane Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C479425">PEN1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015221">Potassium Channels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050765">Qa-SNARE Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D025801">Ubiquitin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004594" MajorTopicYN="N">Electrophysiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017930" MajorTopicYN="N">Genes, Reporter</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008565" MajorTopicYN="N">Membrane Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018613" MajorTopicYN="N">Microscopy, Confocal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018408" MajorTopicYN="N">Patch-Clamp Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019441" MajorTopicYN="N">Plant Epidermis</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015221" MajorTopicYN="N">Potassium Channels</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050765" MajorTopicYN="N">Qa-SNARE Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025801" MajorTopicYN="N">Ubiquitin</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>6</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21251017</ArticleId>
<ArticleId IdType="doi">10.1111/j.1365-3040.2010.02262.x</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Écosse</li>
</region>
<settlement>
<li>Glasgow</li>
</settlement>
<orgName>
<li>Université de Glasgow</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Blatt, Michael R" sort="Blatt, Michael R" uniqKey="Blatt M" first="Michael R" last="Blatt">Michael R. Blatt</name>
<name sortKey="Donald, Naomi" sort="Donald, Naomi" uniqKey="Donald N" first="Naomi" last="Donald">Naomi Donald</name>
<name sortKey="Grefen, Christopher" sort="Grefen, Christopher" uniqKey="Grefen C" first="Christopher" last="Grefen">Christopher Grefen</name>
<name sortKey="Hills, Adrian" sort="Hills, Adrian" uniqKey="Hills A" first="Adrian" last="Hills">Adrian Hills</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Écosse">
<name sortKey="Chen, Zhonghua" sort="Chen, Zhonghua" uniqKey="Chen Z" first="Zhonghua" last="Chen">Zhonghua Chen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000583 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000583 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21251017
   |texte=   A bicistronic, Ubiquitin-10 promoter-based vector cassette for transient transformation and functional analysis of membrane transport demonstrates the utility of quantitative voltage clamp studies on intact Arabidopsis root epidermis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21251017" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024